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ABSTRACT

The need to learn a good representation is a core problem central to AI. We present a self-supervised
representation learning framework and demonstrate its use for few-shot classification and clustering.
Our framework can be interpreted as repeatedly discovering new categories from learned embeddings
and training a new embedding function with self-supervised signals to differentiate the discovered
categories. In our framework, we first discover categories from unlabeled data, next we post-process
the previous partition results to remove outliers and derive prototypes of each category, we then con-
struct few-shot learning tasks with previously selected data and augmented virtual data, lastly we pro-
pose a iterative training algorithm to learn the final representation. By combining these components,
we can considerably outperform previous baselines in unsupervised few-shot classification tasks on
minilmageNet and Omniglot data sets. We also validate our learned representation on clustering tasks
and demonstrate that our framework further improves upon the recent deep clustering methods.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Supervised visual representation learning has achieved great
success in recent years. However, learning a good representa-
tion still requires much-labeled data under a supervised learning
setting. Learning a useful visual representations without human
supervision is a fundamental, understudied and long-standing
problem [6]. Two popular learning paradigms for unsupervised
representation learning are deep clustering and self-supervised
learning.

Some works have been proposed for deep clustering [28,
14, 30]. This work is limited in that it adopts a multi-stage
pipeline that pre-trains the auto-encoders with reconstruction
loss and then applies a clustering module on it. Though these
approaches yield better clustering results than traditional clus-
tering methods on image data (as they learn a new represen-
tation for clustering), they are are not as useful for unseen
(novel) classes/clusters. An alternative representative learning
paradigm is self-supervised learning methods. Self-supervised
learning approaches learn representations using objective func-
tions similar to those used for supervised learning, but train
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networks to perform tasks where both the inputs and labels
are derived from an unlabeled dataset. Many recent works
[9, 31, 19, 12] have been proposed, for example, [12] performs
data augmentations such as rotating the images with different
degrees and then to train the neural networks to predict the cor-
responding degrees. Although these learned models may not
fully match the performance of supervised-learned representa-
tions, they have proved to be better than purely unsupervised
representation learning approaches. However, these approaches
perform self-supervised learning via heuristics with varying as-
sumptions that if not true may harm the generalization ability
of the representation.

In this work, we address learning a representation without
supervision and demonstrate its use on two popular learning
tasks. Our approach (visualized in Figure 1) to representation
learning takes several intuitive steps as follows.

Category Discovery. Here we perform unsupervised repre-
sentation along with clustering to take the unlabeled instances
and place them into different categories/groups (C; ... Cy).

Post-Processing for Representative Data. Next, using an
integer linear programming (ILP) formulation, we post-process
the clustering partitions to get representative instances and bal-
ance discovered clusters in the previous step.

Construct Tasks for Category Differentiation. Now we



use previously selected representative instances and then create
augmented versions as our training set. Inspired by the recent
success of meta-learning (which aims to learn from limited data
to generate to unseen classes), we create few-shot learning tasks
which minimize the intra-category variation whilst maximizing
the inter-category embedding distance for better category sepa-
ration.

Iterative Training. We iterative the above three steps to dis-
cover categories based on learned embedding and refining the
embedding.

We demonstrate our representation learning scheme on two
classic minimal supervision problems: clustering and few-shot
classification. The few-shot classification here is a paradigm
where the model has been learned for the base classes and then
is transferred to learn to predict novel classes of which there
are only a few examples available. We argue that a good vi-
sual representation should not only naturally separate images
that belong to different semantic groups within the training set
but also be applicable for unseen classes. We evaluate our
learned embedding functions in two settings: we first study
the unsupervised few-shot classification problem with bench-
mark data sets such as Omniglot and minilmageNet; we then
test our learned embedding function on clustering tasks to show
whether our pipeline improves upon different initial unsuper-
vised representations. Based on experimental results, we show
our approach achieves state-of-the-art performance comparing
to recent unsupervised few-shot classification baselines. More-
over, the clustering results demonstrate that our method consis-
tently improves the embedding learned by unsupervised repre-
sentation learning for clustering.

We summarize the contributions of our work as follows:

e We propose a framework to improve the unsupervised rep-
resentation learning (see section 3).

o We validate our proposed model in unsupervised-few-shot
learning settings and show our proposed model achieves
state-of-the-art results for benchmark datasets. Experi-
mental results on clustering analysis also show that our
work can further improve the embedding generated via
popular deep clustering baselines (see section 4).

e Our ablation study shows the contributions of different
technical components. We find out both the integer linear
programming based post-processing algorithm and itera-
tive training strategy improves the quality of our learned
representations.

We begin this paper by next briefly overviewing related re-
search, after which we discuss our approach in section 3. We
experimentally compare our methods to many different base-
lines in section 4 and finally conclude.

2. Related Work

Image Representation Learning. Deep unsupervised fea-
ture learning has been explored to learn informative represen-
tations of images. One line of this direction is learning var-
ious auto-encoders that learn a reduced feature representation
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that can reconstruct the inputs. For example, the auto-encoder
[4], denoising auto-encoder [25], variational auto-encoder [17],
and adversarial auto-encoder [3]. Additionally, deep generative
models also learn the underlying latent information about im-
ages and many generative adversarial networks [13, 7, 8] have
been proposed to encode visual information from an adversarial
learning strategy.

Recent deep clustering works take the advantages of these
unsupervised visual representation techniques to learn cluster-
ing favored representations. For example, [28] (DEC) fine-tune
the embedding learned from stacked-denoising auto-encoder
via a self-supervised signal to form tight clusters. Unlike
DEC, [11] guides agglomerative clustering and feature learn-
ing jointly based on the over-clustering initialized by KNN.[5]
does discriminative clustering by alternating between cluster-
ing the features of a convolutional neural network and using
the clusters as labels to optimize the network weights via back-
propagating a standard classification loss. Our work is similar
in style to previous deep clustering works, which learn a repre-
sentation that is general for clustering is useful. Differently, our
framework further improves the representation learned by these
works via clustering and self-supervised few-shot learning.

Unsupervised Meta-Learning. Recent work studies the un-
supervised meta-learning problem, which focuses on how to
generate tasks for meta-learning approaches and pre-train the
few-shot learner to achieve comparable performance with su-
pervised meta-learning. For example, [15] constructed tasks
from unlabeled data via clustering from different views and runs
meta-learning models over the constructed tasks. This paper’s
core idea is to leverage the unsupervised embeddings to pro-
pose tasks for a meta-learning algorithm to pre-train the model
for potential supervised few-shot classification tasks. [16] al-
lows unsupervised, model-agnostic meta-learning for few-shot
classification problems by generating synthetic data with artifi-
cial labels. [2] uses a similar way to generate tasks with syn-
thetic data and pseudo labels but train on a more advanced meta
learner as [1]. Our work differs from these works as our model
gets trained over unsupervised few-shot classification tasks as
an intermediate learning step. Moreover, our work aims to learn
a good representation that works for clustering and few-shot
learning by iteratively fine-tune the embedding function learned
with carefully designed few-shot learning tasks.

3. Methodology

In this section, we present details of the proposed represen-
tation learning scheme in which the model discovers different
concepts first and then gradually learns to discriminate both the
representative instances and augmented instances within differ-
ent concepts. We introduce a new method to learn an unsuper-
vised embedding function that is useful for both unsupervised
few-shot classification tasks and image clustering.

3.1. Overview

The pipeline of our proposed framework is illustrated in Fig-
ure 1. Firstly, we leverage the existing image representation
methods and embed all training data into one latent space and
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Fig. 1: Pipeline of the proposed unsupervised representation learning framework. The inputs are unlabeled images and the output is the learned embedding function.
The learning process mainly contains fours steps: 1) category discovery, 2) category post-processing, 3) generate virtual instances to construct learning tasks, 4)

learning to differentiate created categories.

conduct clustering. Secondly, given the clustered instances, we
propose an integer linear programming based formulation to
identify some unlabeled instances for representative and bal-
anced clusters. Thirdly, we augment the selected representa-
tive instances of each discovered category to enrich the training
data. Finally, we train our embedding function with Prototype-
based networks using self-generated few-shot learning tasks.
We repeat the previous learning steps until we learn a stable
representation.

3.2. Step 1: Category Discovery

Clustering is a natural way to gather data that has similar fea-
tures or close semantic meanings. Recent works on deep clus-
tering that simultaneously conduct representation learning and
clustering have been shown to outperform traditional clustering
approaches. We take advantage of new unsupervised represen-
tation learning methods and choose one of them as our initial-
ization function ¢(x). Given all the unlabeled points {xi, ... x,}
we can calculate their embeddings as {¢(x), ... ¢(x,)}.

We assume that each discovered category/concept should
have one centroid, and all the instances belonging to this cat-
egory/concept should be closely clustered around the centroid.
Thus we use the K-means objective below to look for concepts:

n
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C is a dxk matrix where each column corresponds to a centroid,
k is the number of centroids, and z; is a binary assignment vec-
tor with length d. By solving this objective function, we will
get k clusters of unlabeled instances, which will be used as dis-
covered categories for the next learning stage.

3.3. Step 2: Post-Processing for Representative Data

We wish to use the discovered categories to generate pseudo-
labels and create pre-tasks for our next step’s self-supervised
learning. However, directly using these partitions to generate
supervised learning tasks will incur several challenges. For ex-
ample, 1) the size of each cluster may vary greatly so that large

clusters can dominate; 2) some unlabeled instances are hard as-
signed to a category so that the instances lying on the cluster de-
cision boundaries are prone to be falsely clustered. To counter
the previous issues, we propose selecting a group of instances
that best resembles the centroids of each discovered category
and form balanced clusters.

Given the n unlabeled instances we aim to find a n X 1 bi-
nary allocation vector T = {r1,...1,} that selects valuable un-
labeled instances. #; = 1 means instance i is selected and
t; = 0 means we ignore instance i. Given the learned latent
embeddings {¢(x;),...#(x,)} and the centroids for k clusters as
C ={ci,...ct}, we calculate the cluster probability distribution
of instance x; belonging to cluster j as w;;:

__exp-llgxi) — i)
3 exp (=llg(x) = c,l)
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We look for instances which lie close to their category cen-
troids, to measure the closeness we calculate the entropy of
each instance as Q; = H(w;) = —Z’;zlwij logw;; and use n x 1
vector Q to represent them. Now we solve for the n X 1 binary
vector 7. One objective function then is simply find the most

valuable instances:

arg min Z 10 3)

i

The aim of the constraints are two-folded: to balance the size
of each discovered category whilst also keep the most valuable
instances. Our first basic constraint includes the total number
of selected instances to be m < n so that uncertain unlabeled
instances will be removed. Our next constraint requires that
each cluster should have a reasonable number of instances so
that some large clusters won’t dominate. Thus we have

s.t. Z ti=m 4

sty tzi=L V] Q)



fo

N

X*, Y*

X*+A(X") /_\
L \_/

Clustering and Refinement

Clustering and Augmentation

Fig. 2: The whole learning process of our framework (left hand side shows model initialization and right hand side shows iterative learning). Left: The unlabeled
points set X is first encoded to Z via existing unsupervised representation learning function ¢(x). After that we conduct clustering on Z and post-process the
clustering assignments to get pseudo-labeled data set X*, Y. Right: Given the pseudo-labeled data and corresponding composed augmentations we train ProtoNet
fo via episodic learning and get learned embeddings Z, clustering on Z and re-label X* and generate new augmented instances.
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Note that U and L serves as the upper bound and lower bound
of each cluster’s size. Details of how we set up the constraint
hyper-parameters will be described in experimental section 4.

3.4. Virtual Instance Generation

Given the m selected instances which belong to k categories,
the instances belonging to the same category tend to be similar
to each other and are not diverse enough. Training a super-
vised few-shot learning model over these instances is prone to
overfitting due to the low-diversity and cannot generalize well.
Moreover, the learned embedding will largely resemble the em-
bedding which we initialized.

Increasing the number of training examples by data augmen-
tation is a popular approach in supervised learning and semi-
supervised learning to improve generalization. Before splitting
the selected instances into support sets and query sets for meta
training, we apply traditional image augmentation approaches
to augment the m chosen instances. We pick the standard image
augmentation strategies to enrich the diversity while maintain-
ing the class membership of the augmented instances. To be
specific, we compose random sized crop, image jitter, and ran-
dom horizontal flip as our augmentation strategy.

3.5. Iterative Training

In this section, we introduce how we train our representa-
tion learning framework thoroughly. Our work aims to learn an
embedding function f, that naturally splits the discovered cate-
gories of all the unlabeled instances and form tight and diverse
clusters. To achieve this goal, we propose to use a prototype-
based network as fj and train it via few-shot classification tasks
based on discovered labeled instances.

We first introduce notations and recap the few-shot learn-
ing setting. In few-shot learning tasks, we divide the dataset
into three disjoint sets which are meta-training set S”, meta-
validation set 8" and meta-testing set S**'. 8" contains all the
base classes, S"/ and S**' contains disjoint novel classes. The
few-shot learning models are trained in an episodic paradigm
[26] that each episode contains one support set 2° and one
query set D?. Here, the support set D° serves as the labeled
training set on which the model is trained to minimize the loss
of its predictions for query set DY.

Secondly, we introduce how to train our few-shot classifi-
cation learner. Denote the augmented representative training
set as 8™, now we randomly split S into support set D° and

query set DC. We choose Prototypical Networks as our learner
to classify different discovered classes. Prototypical Networks
compute an M dimensional representation ¢, € R, or pro-
totype, of each class through an embedding function fy with
learnable parameters 6. Each prototype ¢ is the mean vector of
the embedded support points belonging to class k:

a= o Y )
k- (xiyneDi
Given a Euclidean distance function d, Prototypical Net-
works produce a distribution over classes for a query point x
based on a softmax over Euclidean distances to the prototypes
in the embedding space:

exp (=d(fo(x), ci))
i exp (—=d(fy(x), cp))

Learning proceeds by minimizing the negative log probabil-
ity of the true class k via SGD: J(0) = —log ps(y = k|x). Train-
ing episodes are generated from meta-training set S”".

Now we connect all the technical components and visual-
ize the training process in Figure 2. Note the embedding func-
tion fj is initialized in each iteration to learn a new embedding
of unlabeled instances that can discriminate against the previ-
ously discovered classes and augmented instances. We repeat
the whole training process for fy until the clustering results re-
main stable. We empirically observe that the clustering results
of the learned embeddings Z tend to converge after a few rounds
of iterative learning loop. Moreover, the iterative learning con-
sistently improves both the clustering results and few-shot clas-
sification performance which can be seen in the experimental
section 4.

po(y = klx) = ®

4. Experiments

The proposed framework is evaluated in two learning set-
tings, which are image clustering and unsupervised few-shot
classification. Our experimental results aim to answer the fol-
lowing questions:

e How does the proposed framework perform on unsu-
pervised few-shot classification tasks compared to recent
baselines?

o Compared to the original features we used to discover the
categories, can our proposed framework provide a further
enhancement in terms of clustering results?

o How does each step within the framework contributes to
the final results?



4.1. Datasets

Omniglot [20] is a dataset of handwritten characters fre-
quently used to compare few-shot learning algorithms. It
comprises 1623 characters from 50 different alphabets. Ev-
ery character in Omniglot has 20 different instances. The
minilmageNetis a collection of ImageNet for few-shot image
recognition. It is composed of 100 classes randomly selected
from ImageNet, with each class containing 600 examples.

We also experiment on some traditional image clustering
data sets to study whether our framework can improve further
on the image clustering tasks: 1) MNIST [18], which con-
sists of 70000 handwritten digits of 28-by-28 pixel size. The
digits are centered and size-normalized in our experiments; 2)
FASHION-MNIST [27]: a Zalando’s article images-consisting
of a training set of 60000 examples and a test set of 10000 ex-
amples. Each example is a 28-by-28 grayscale image, asso-
ciated with a label from 10 classes; 3) USPS, which contains
9298 handwritten digit images with the size of 16 by 16 pixels.

4.2. Implementation Details

We have explored different unsupervised representation
learning algorithms to initialize our pipeline. For the Om-
niglot data set, we choose adversarially constrained autoen-
coder interpolation (ACAI) [3], which is a convolutional au-
toencoder regularized with a term encouraging meaningful in-
terpolations in the latent space. For minilmageNet, we leverage
the recent large-scale unsupervised visual representation work
(DeepCluster [5]). For traditional deep clustering data sets
such as MNIST, Fashion-MNIST, and USPS, IDEC [22] is an
auto-encoder based deep clustering algorithm that we adopted
for testing whether our proposed pipeline improves upon tradi-
tional deep clustering approaches.

For k-means clustering, we initialize the clustering methods
with 100 random trials and use the best trial for initialization;
the number of clusters for unsupervised few-shot learning is set
to 100 empirically for both Omniglot and minilmageNet.

To select the valuable instances from the clustering results,
we set m to be 80% of the original unlabeled data size. The ra-
tionale for selecting a relatively large portion is because we only
observe a small group of points lies between different clusters
across different data sets. The size of selected instances is not
sensitive within the range between 70% to 90% of all unlabeled
data. Denote the average number of instances per cluster as S;
we set the upper bound U and lower bound L as 2S and 0.58.
We solve this integer programming problem by linear program-
ming relaxation and then round the results for faster computa-
tion on complex datasets such as minilmageNet and Omniglot.

For fair comparison with other few-shot classification meth-
ods, we adopt a widely-used CNN architecture [26, 10, 21, 24]
as the feature embedding function f;. Following [21], we adopt
the episodic training procedure, i.e., we sample a set of N-way
k-shot training tasks to mimic the N-way k-shot test problems.
In all settings, the query set’s size of each novel class is set as
15, and the performance is averaged over 1000 randomly gener-
ated episodes from the test set. All our models are trained with
Adam optimizer and an initial learning rate of 1073, We trained
240000 tasks for minilmageNet and 100000 tasks for other data
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Table 1: Comparison to prior works on Omniglot. We report the few-shot clas-
sification mean accuracies

Omniglot
Model G, ) (5,5 (20,1) (20,5
CACTUs-MAML  68.84% 87.78% 48.09% 73.36%
CACTUs-ProtoNet  68.12% 83.58% 47.75% 66.27%
UMTRA 77.80% 92.74% 62.20% 77.50%
AAL-MAML++  8840% 97.96% 70.21% 88.32%
AAL-ProtoNet 84.66% 89.14% 68.79% 74.28%
Ours 94.09% 98.43% 87.56% 96.15%
Supervised-MAML  98.70% 98.90% 95.80% 98.90%
Supervised-ProtoNet 98.80% 99.70% 96.00% 98.90%

Table 2: Comparison to prior works on minilmageNet. We report the few-shot
classification mean accuracies. AAL [2] didn’t report the results for 20 shot
and 50 shot setting so we leave them as blank entries

minilmageNet

Model G, (5,5 (5,200 (5,50)
CACTUs-MAML  39.90% 53.97% 63.84% 69.64%
CACTUs-ProtoNet  39.18% 53.36% 61.54% 63.55%
UMTRA 39.93% 50.73% 61.11% 63.55%

AAL-MAML++  33.30% 49.18% - -

AAL-ProtoNet 37.67% 40.29% - -
Ours 41.16% 57.03% 68.85% 70.64%
Supervised-MAML 46.81% 64.13% 71.03% 75.54%
Supervised-ProtoNet 50.16% 65.56% 70.05% 72.04%

sets. We have included [15, 16, 2] as our unsupervised few-shot
learning baselines and also [14] as deep clustering baseline.

4.3. Unsupervised Few-shot Classification on Omniglot

We compare our model’s unsupervised few-shot classifica-
tion mean accuracy with recent baselines on the Omniglot
dataset in Table 1. We can find our approach significantly
improves upon the previous baselines in both 5 way few-shot
classification and 20 way few-shot classification settings. This
shows that our framework consistently improves the learned
embeddings under multiple way classification tasks. We also
report the representative supervised few-shot classification re-
sults and find out our approach largely minimizes the gap be-
tween unsupervised and supervised few-shot classification in
Omniglot, with 1.27% difference in 5-way 5-shot learning and
1.75% difference in 20-way 5-shot setting.

4.4. Unsupervised Few-shot Classification on minilmageNet

We further evaluate the unsupervised few-shot classification
on minilmageNet data set which is much more challenging than
Omniglot. Results are reported in Table 2. As shown, our ap-
proach still achieves the best results for 5 way classification
with a different number of shots. This suggests that our frame-
work is general across different data sets and behaves consis-
tently under different few-shot classification settings. More-
over, comparing our results with the supervised baselines, we
can find the gap is larger compared to the gap in Omniglot
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Fig. 3: We evaluate the clustering NMI for our learned embeddings on Om-
niglot and minilmageNet for each training iteration.

dataset. This is acceptable as images within minilmageNet vary
and are harder to recognize.

4.5. How our framework improves upon the initial embeddings
in terms of clustering performance.

Our proposed framework takes advantage of the initialization
embeddings learned from recent unsupervised learning meth-
ods. To show how our model improves upon them, we test the
clustering performance of both initial embeddings and learned
embeddings and plot the results in Figure 3. Note we have
used ACAI’s [3] embedding algorithm to initialize Omniglot
data and DeepCluster’s [5] embedding approach to initialize the
minilmageNet data. We adopt standard metrics for evaluating
clustering performance which measures how close the cluster-
ing found is to the ground truth result. Specifically, we employ
the normalized mutual information (NMI) [23, 29].

As can be seen from part (a) of Figure 3, we train our frame-
work for five iterations with 5-way and 20-way few-shot classi-
fication tasks. The embeddings’ clustering performance consis-
tently improves as the number of rounds increasing and tend to
converge after five iterations. The first iteration of learning pro-
vides the largest improvement, which shows that our framework
further improved the initialized embedding. Moreover, we dis-
cover that the embeddings learned with five shots are better for
clustering than the embeddings learned with only one shot. We
have observed the similar results in minilmageNet experiment
that shown in part (b) of Figure 3. Our framework can provide
consistent improvements across different data sets with differ-
ent initializations.
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Fig. 4: We evaluate the clustering NMI for our learned embeddings on MNIST,
FASHION-MNIST for each training iteration.

Moreover, we have tested our approach on traditional cluster-
ing datasets such as MNIST, FASHION-MNIST, and USPS. We
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apply two approaches to initialize all these three datasets. We
first test on whether our framework can improve upon the ex-
isting deep clustering approach (IDEC). We also use a naive K-
Means clustering on the raw images to test whether our frame-
work is sensitive to the initial partition results. We fix the few-
shot classification tasks as 5-way 5 shot classification problem
for our training process. The clustering results for these three
data sets are shown in Figure 4.

Firstly, we can find our framework always improves the clus-
tering performance no matter which initialization strategy we
use. Secondly, we observe that even if we start our framework
with K-Means partitions over the raw images, our framework
can still largely improve the clustering NMI for MNIST and
Fashion-MNIST. Thirdly we find that our approach can achieve
high NMI over USPS data set by using K-Means initialization.
We hypothesis this could happen when the initial NMI is rela-
tively high. Overall speaking, our proposed approach is general
for learning a representation that is suitable for clustering; the
initialization approach serves as a performance lower-bound for
our framework.

4.6. Benefits of data augmentations

Figure 5 (a) and (c) shows the impact of adding composed
data augmentations when models are trained for different few-
shot classification settings. In the Omniglot data set, we find
that when we are doing 1-shot learning, data augmentation con-
tributes significantly to the final performance. With more la-
beled points, the gaps between using or not use augmentation
decrease. However, we still observe a large improvement in
terms of classification accuracy. In minilmageNet, we find data
augmentation consistently improves the final performance with
a different number of shots. Overall speaking, the composition
of data augmentations plays a critical role in unsupervised few-
shot classification.

4.7. Benefits of category post-processing

Figure 5 (b) and (d) shows that the culling of unlabeled in-
stances via our post-processing objective improves the perfor-
mance on both data sets. This suggests that directly using the
naive K-Means clustering results to design pre-task may not be
appropriate, picking instances which are representative for each
discovered class is beneficial for creating useful few-shot clas-
sification tasks.

5. Conclusions

We have presented a self-supervised learning framework to
learn representation on images for better downstream tasks such
as unsupervised few-shot learning and clustering, where no
human annotation is provided. We first discover categories
from initialized embeddings and then propose integer linear
programming to select valuable instances that form balance
and representative concepts. Moreover, we augment the se-
lected valuable instances to create pre-tasks and iterative train
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our network to fine-tune gradually, which resembles the hu-
man learning process, such as discovering concepts and learn-

ing

to separate them. We show by experiments that the pro-

posed framework has further improved the embedding initial-
ized by existing representation learning approaches in terms of
downstream tasks. For unsupervised few-shot classification,
our proposed approach achieved state-of-the-art performance

on

the Omniglot and minilmageNet benchmarks. In the image

clustering setting, we also find our approach further improves
recent deep clustering approaches under traditional clustering
data sets. The ablation study demonstrates the importance of

€ac

h technical component in our framework.
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